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ABSTRACT

This thesis develops, implements and tests a mine search
algorithm for the Naval Postgraduate School Autonomous Underwater
Vehicle (Phoenix). The wvehicle is 72 inches long and displaces
400 pounds. Its maneuvers are performed using two propellers and
four thrusters. It contains two embedded computer systems. ‘The
algorithm directs the autonomous search of a specified area
mapping all obstacles and éomputing an estimate of the fraction of
area searched. The algorithm uses no prior knowledge of the
terrain or the location of mines. The algorithm, which is written
in Lisp, can execute on the vehicle's computer systems. Along
with the search and mapping capabilities, the algorithm executes
obstacle avoidance. The algorithm is tested in several simulated
scenarios with different placement of mines and obstacles; the
amount of resources used and the fraction of area searched is
computed. A similar algorithm that uses hill-climbing search is
implemented for comparison. In all cases, the newly developed
algorithm performed equal or better than the one that wuses

hill-climbing.
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EXECUTIVE SUMMARY

A. BACKGROUND

The advancement of technology is allowing the substitution of
machines for men in several fields. The military is certainly one
of them. Due to its nature, filled with so-called "dirty jobs",
the military is the perfect place for employment of robots. Mine
warfare is a specially suitable environment for development and
use of this technology. Mine search gains a new perspective with
the use of Autonomous Underwater Vehicles (AUV's). The absence of
knowledge about the enviromment, the necessity of performing
obstacle avoidance, the short range of the sensors, the object
recognition problem, together with the ability to maneuver in
three dimensions make the mine search through AUV's an interesting
and challenging problem.

The NPS AUV project was begun in 1987 as a joint effort of
the Mechanical Engineering, Computer Science and Electrical
Engineering departments. It began with the sponsorship of the
Naval Surface Weapons System (NSWC). With the evolution of the
project, other agencies joined the group of sponsors, supporting
different aspects of the research. The Undersea Warfare

Curriculum and the Operations Research Department contribute to

xi




the project, either by providing financial support or students to
work in the NPS AUV group. The project encompasses research in
areas of mechanical engineering, control systems, artificial

intelligence, and computer commmnications and networks.

B. DEVELOPMENT

This thesis develops and implements a mine search algorithm
for the Naval Postgraduate School Autonomous Underwater Vehicle
(Phoenix) . To give the robot decision making ability the
algorithm uses artificial intelligence techniques. The algorithm
is based on a high level ‘"raster-scan" strategy combined with a
sweeping heuristic and hill-climbing procedures. This thesis also
establishes measures of effectiveness to evaluate the algorithm

and possible future developments.

C. ACCOMPLISHMENTS

The algorithm directs the autonomous search of a specified
area, without prior knowledge of its characteristics, mapping all
obstacles and computing an estimate of the fraction of area
searched. It is written in Lisp, an AI language, and proved to be
fast enough to drive the vehicle. Along with the search and
mapping capabilities, the algorithm performs obstacle avoidance.
The algorithm is tested in several simulated scenarios with
different placement of mines and obstacles; the amount of

resources used and the fraction of area searched is computed. A
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similar algorithm that uses hill-climbing search is implemented
for comparison. In all cases, the newly developed algorithm
performed as well or better than the one that uses hill-climbing.
Experimental results show that an average fraction of the area

searched of 0.7 is achieved using this algorithm.




I. BACKGROUND

A. INTRODUCTION

The advancement of technology is allowing the substitution of
machines for men in several fields. The military is certainly one
of them. Due to its nature, filled with so-called "dirty jobs",
the military is the perfect place for employment of robots. Mine
warfare is a specially suitable environment for development and
use of this technology.

Naval search problems have received special attention since
the creation of the Anti-Submarine Warfare Operations Research
Group (ASWORG), later called Operations Evaluation Group (OEG),
during World War II [Ref. 1]. The great threat presented by the
German Navy, particularly by its submarines, led the United States
into scientifically studying the search problem. Those studies
provided the basis for further development of such problems.

Mine search constitutes a particularly delicate problem.
Despite the risk that the actual conduct of the search presents to
the searcher, or sweéper, the results of a sweeping can

dramatically change the course of operations.




B. THE NAVAL POSTGRADUATE SCHOOL AUTONCMOUS UNDERWATER VEHICLE
(PHOENIX) PROJECT

The NPS AUV project was begun in 1987 as a joint effort of
the Mechanical Engineering, Computer Science and Electrical
Engineering departments. It began with the sponsorship of the
Naval Surface Weapons System (NSWC). The first vehicle built was
based on the Navy's Swimmer Delivery Vehicle (SDV) [Ref. 2].
With the evolution of the project, other agencies joined the group
of sponsors, supporting different aspects of the research. The
Undersea Warfare Curriculum and the Operations Research Department
contribute to the project, either by providing financial support
or students to work in the NPS AUV group. The project encompasses
research in areas of mechanical engineering, control systems,
artificial intelligence, and computer communications and networks.

The present NPS AUV, named Phoenix, has a total length of 72
inches and displaces about 400 pounds. It is propelled by two
electrical motors and has four transverse thrusters, two
horizontal and two vertical, that give it a unique maneuverability
capability. Attitude control is provided by four horizontal and
four vertical fins in conjunction with the thrusters. It has two
embedded computer systems. One performs the vehicle's hardware
control, known as the Execution Level. The other provides what is

called the Tactical and Strategic Level. The Tactical Level is




the intermediate level control of the AUV, as further described.
Two sonars are used. The ST725 is a scanning sonar that operates
at 725 Khz and has an approximate range of 40 m. It has a beam 1
degree wide by 24 degrees vertically, with a resolution of 1 cm.
It is used for area survey. The ST1000 operates at 1000 Khz, and
has a 1 degree conical beam. It is utilized as a profiling sonar.
Both sonars are 360 degrees steerable. A schematic drawing of the

NPS AUV is shown in Figure 1.
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Figure 1: The NPS AUV schematic drawing




An underwater virtual world and an AUV simulator are also
being developed as part of the project. They allow the evaluation
of the robot and most of its components without putting it at risk

[Ref. 3].

C. THESIS OBJECTIVES

The purpose of this thesis is to develop and implement, using
an artificial intelligence language, a mine search algorithm for
an autonomous underwater wvehicle. Since it will be executed by a
robot, the main requirement for the algorithm is to be realistic
and simple. The algorithm has to consider the three-dimension
movement capability of the robot in the absence of prior knowledge
of the environment. It has to provide the robot with obstacle
avoidance. As an output, the algorithm shall provide an estimate
of the attained fraction of area searched and a map of the
searched volume. This thesis will also explain how the current

algorithm interfaces with the robot.

D. THESIS ORGANIZATION

This thesis is organized in six chapters. Chapter 1II
provides detailed information on the AUV software organization,
general mine search considerations and a summary of previous
related work. Chapter III defines the problem and the assumptions
made to obtain a solution. Chapter IV describes the solution and

explains the new algorithm. Chapter V addresses typical




environment configurations and provides experimental results.
Chapter VI discusses the algorithm and establishes foundations for

further research on the topic.

E. SUMMARY

An AUV is possibly the best way to perform mine search. Its
autonomous characteristic is welcome as a way to reduce human risk
significantly. The effective use of a robot poses intriguing
questions whose answers have ramifications in artificial
intelligence, machine learning, optimization and other related
fields.

This chapter gives a brief introduction to the NPS AUV
project and explains its relation to mine search and to this
thesis. It includes a description of the thesis objectives and

organization.







II. PREVIOUS WORK

A. INTRODUCTION

Mines have been around since the American Civil War. Mines
dating from the WW I are still in use and can be very effective
[Ref. 4].

Two basic mine countermeasures are mine sweeping and mine
hunting. Although those procedures have improved during the
years, they are limited by the fact that the executing agent is a
ship, with the exception of some helicopters used for mine
hunting. The current development of autonomous robots 1is

gradually changing this scenario.

B. CONTROL ARCHITECTURE

The control of a robot naturally demands different levels of
abstraction. The NPS AUV uses a software architecture called the
Rational Behavior Model (RBM). [Ref. 7]

The RBM defines three levels of abstraction. The Strategic
level is the highest level of abstraction and is designed to guide
the overall wvehicle behavior using only symbolic computation.
This level has no time constraints and communicates asynchronously

with the next level, the Tactical level.




The Tactical level is the interface between the highest or

Strategic level and the lowest or Execution level. The Tactical
level is responsible for implementing the general behaviors
defined by the Strategic level, issuing specific commands to the
Execution level, and returning the pertinent information to the
upper level. The most common command issued to the lower level is
a setpoint, e.g., the next waypoint. It is also responsible for
the analysis of the data supplied by the Execution level.

The Execution level is responsible for directly controlling
the robot hardware. It performs only numeric processing and hosts
all hard real-time processes. It controls the vehicle stability
and has provisions to be the final safety agent. It overrides any
command that can endanger the vehicle.

The simplest and most common used analogy for the different
levels is a real submarine organization. The Strategic level
corresponds to the Commanding Officer. The Tactical level is
equivalent to the O0OD and his assistants. The Execution level is
represented by the execution agents on the submarine, e.g., the

helmsman and other crew members.

C. SEARCH AND MINEFIELD CONSIDERATIONS
The theoretical foundations for search theory were
established by Koopman [Ref. 1]. Koopman's work was later

expanded by many authors and received special attention from Stone




[Ref. 8]. References [9,10] are surveys of works in search
theory and contain extensive bibliographies.

Minefield search has received little attention from the
search community. The areas that have received more attention are
minefield planning and simulation.

Two good search strategies are defined by Washburn for
multiple stationary target search [Ref. 111. In both cases
though, it is assumed that the searcher has to actually visit all
detected targets, which is not the AUV case. It also makes no
provision for obstacle avoidance, most likely because it was
conceived for surface ships.

The search performed by the AUV takes place in a volume and
not in an area as most models define. There is not a provision in
any theoretical model that accounts for unpredicted obstacles in
the search path, not even for known obstacles. In addition, the
search theory literature generally assumes that when the target is
found it is immediately recognized by the searcher.

In robotics, most of the attention is directed to obstacle
avoidance and dynamic path planning in unknown terrain. Lumelsky
defines very good solutions to the dynamic path planning problem
[Ref. 12]. Another approach to the same problem is defined by
Krogh and Feng [Ref. 13]. A mine avoidance problem is solved by

Hyland and Taylor [Ref. 6]. A survey of motion planning




algorithms is found in reference [14]. Caddell defines a method
for three-dimensional path plamming [Ref. 15].

The limitation of the present object recognition techniques
and the inability of the AUV to disarm or destroy a mine calls for
a map generating capability. The generated map is evaluated by
the required specialists and used to direct the neutralization
efforts. A simplified occupancy grid approach is used, with no
uncertainty [Ref. 16].

Compton has a fairly complete study of the problem and this
thesis has certainly benefited from that [Ref. 2]. However,

certain assumptions used in his model are not used here.

D. SUMMARY

The AUV is a sound representation of an emerging technology.
The RBM software model is an attempt to cope with the many
distinct problems concerning the implementation and control of a
robot.

Mine search gains a new perspective with the use of AUV. The
absence of knowledge about the environment, the necessity of
performing obstacle avoidance, the short range of the sensors, the
object recognition problem, together with the ability to maneuver
in three dimensions make the mine search through AUV's an

interesting and challenging problem.
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III. PROBLEM DEFINITION

A. INTRODUCTION

The mine search algorithm is intended to be realistic and
simple as stated in the Thesis Objectives section. These two
principles bound the way assumptions are made about the real
world. When a conflict between the principles occurs, the simple
solution is chosen. This is done to avoid any decision that may

compromise the algorithm's effectiveness in a real operation.

B. MINE SEARCH

The search will be defined considering the type of target and
environment characteristics. Although differences may exist
regarding minefield characteristics, due to different mining
objectives and type of missions to be supported, these are not
taken into account.

The only data provided to the algorithm are the wvolume
coordinates. The parameters needed to determine the sonar
performance under the actual specific conditions and the available
resources, i.e., maximum time available for the mission, are used

to tailor the algorithm for the specific search conditions. No

11




prior knowledge of the terrain or the location of the mines is
assumed.

The algorithm can be adjusted for the actual parameters and
will discover the characteristics of the terrain as the search
progresses.

The position of the mines and a map of the terrain will be
the result of the search. The total fraction of the area searched
will be calculated as well as the total amount of resource spent

during the search.

C. SEARCH SPACE DEFINITION

To compare different search strategies a basic search space
will be defined. The search space will be a rectangular prism,
described as a three-dimensional matrix. The vehicle will only be
allowed to be in one cell at a time. If there are no obstacles
the vehicle will have 26 neighbor cells that it can move to from
its present position. These assumptions were also used by Compton

[Ref. 2].

Figure 2: A 27-cell block

12




Using these basic definitions several scenarios with distinct
obstacles and mine displacements will be used to allow a fair

evaluation of the heuristic.

D. OBSTACLE AVOIDANCE

The AUV Execution Level can perform obstacle avoidance by
itself. That ability is provided as a safety measure and although
it protects the integrity of the robot it does nbt contribute to
the search itself. The Execution Level avoidance maneuver will
not be used by the mine search algorithm. The algorithm will
provide the AUV with obstacle avoidance behavior that will
contribute to the search being conducted.

Although it is part of the wvehicle architecture, we use no
object recognition module. The system is easily modified to use
any recognition algorithm that uses the profiling sonar. The
existence of such an object would certainly help in the search.

All the obstacles will be mapped. If the object recognition
module was available, obstacles could be mapped using different
representation depending on their characteristics. The algorithm
will give the vehicle the ability to determine the precise
location and the approximate size of the object.

Generally all the areas that can be mined are mapped.
Although the actual obstacles may not be represented in the

charts, the depth information is reliable. The largest depth

13




within the search area will be given to the algorithm. This will
be called Base Depth as shown below. This information is taken
from the area coordinates given to the algorithm. An example of

an (artificial) bottom contour map is provided by Fig. 3.

D0

50

200
00

300

Figure 3: Bottom contour lines example (Base Depth = 300 ft)

E. AUTONCMOUS CONTROL

The most important feature of the algorithm is its capacity
to perform a search mission autonomously. Due to this necessity

the algorithm will behave in a way that reinforces the following

directives:

14




®The vehicle shall above all avoid getting into an

unrecoverable situation.

BReliable information shall be given to the user when

the mission is completed.

WThe available resources shall be used always trying to

improve the effectiveness of the search.

Considering that the vehicle will be planning and replanning
its own path, it will have basic naneuvering’strategies defined.
The search will be an exhaustive search and will follow a "raster
scan" pattern [Ref. 11]. Since the search space is defined in
three dimensions, two possibilities arise:

WHorizontal Layering

m/ertical Layering

The earlier is the simpler approach. The search is conducted
as a horizontal ladder pattern. Obstacle avoidance is performed
usually through lateral turns. After a whole horizontal layer is
searched, the wvehicle goes deeper, proceeding to the next layer.
This is frequently called "Cake Layering."

Vertical layering although not as simple for the AUV, due to
the kind of maneuvers that will be required, has some advantages,
as will be discussed below. In this case the obstacle avoidance
maneuvers will usually be achieved by vertical changes to the

course. The search space will then be divided in wvertical slices

15




and normally a slice change will be performed only after a whole
vertical slice has been searched.
Those strategies will determine the behavior of the wvehicle

in different maneuvering or decision making situations.

F. RESOURCE OPTIMIZATION CONSIDERATIONS

The lack of knowledge about the search wvolume limits the
development of an optimal policy. The position of the obstacles
and mines can not be anticipated, and so replanning may be needed
at each step of the search. The location of obstacles and mines
is so critical that it may cause an early termination of the
search due to a shortage of resources.

The possibility of an early termination of a search makes the
vertical layering algorithm a better choice. If the horizontal
layering method is used and the search is not completed, the whole
volume will remain interdicted. Using the vertical layering
though, whenever the search is halted, part of the volume will be
already clean.

The need to have a simple and realistic algorithm, added to
the real-time characteristics of such a problem, reduces the
possibility of finding an optimal policy. Obstacles are found
during the execution, and at each step new constraints can be

added which force the AUV to replan the search.
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In the AUV case, the resource to be saved is the battery. In
a later stage of the project, the Tactical Level will receive real
information about the situation of the battery set and use this
information to replan the search path. While this feature is not
yet implemented on the Phoenix vehicle, the measure of
effectiveness (MOE) to be used will be the amount of resource
needed to cover the whole seérch volume.

For the purpose of this simulation the MOE associated with
the resource will be a Unit of Resource or UR. Different amounts
of UR will be related to each specific maneuver that can be
performed by the vehicle, as defined below:

mLevel, straight move: 1 UR

BLevel, 45° turn: 1.1 UR
ELevel, 90°turn: 1.2 UR
WLevel, 135°turn: 1.3 UR

sLevel, 180° turn: 1.4 UR

mLevel, lateral move: 1.5 UR

SLevel, reverse move: 2.0 UR

®J/ertical depth change: 2.0 UR

Any non-vertical depth changes just add 0.3 UR to the values

above.

17




G. FRACTION OF AREA SEARCHED

The fraction of area searched will be calculated using the
"cookie-cutter" assumption [Ref. 5]. The sonar range can be
varied to investigate the performance of the strategies in
different scenarios.

The sonar detection region will be a sphere centered at the
nose of the wvehicle, as shown in Figure 4. Considering the
"cookie-cutter" assumption, the fraction of area searched will be
the number of cells touched by the sphere divided by the total

number of cells in the search volume.

o I
di D

Figure 4 : AUV sonar profile
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For the purpose of this thesis, the sphere defined by the

sonar range is assumed to contain a cube composed of 27 cells.

H. SUMMARY

The mine search is directed to moored mines. The search
space is defined as a rectangular prism, divided into rectangular
volume elements (or voxels as defined in Hyland and Taylor's work)
[Ref. 6]. The whole volume will be called search area or area.
The user provides just the area coordinates, maximum depth and
sonar range. There is no available map of the terrain. Obstacle
avoidance has to be performed by the algorithm. A post-search map
of the volume has to be generated.

Costs are associated with each type of maneuver performed by
the AUV. A fraction of area searched is accessed at the end of
the search and is used as a MOE together with the total cost of

the mission.







IV. ALGORITHM DEVELOPMENT

A. INTRODUCTION

One might think that it would be sufficient to establish a
goal at the other side of the area and perform some kind of
shortest path with obstacle avoidance. This is not the case. It
is easy to see that in the case where a large obstacle blocks the
originally plammed path, the avoidance maneuver would leave a
large area uncovered (Fig. 5). This is unacceptable for a mine
search. To overcome this difficulty, sub-goals are generated by
the obstacles along the path to force the AUV to fill the gaps.
To plan the new path a customized procedure is used. It is
developed with the intent to mimic a human faced with the same

problem.

shortest-path

goal O

Figure 5: Result of a shortest-path procedure

start
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B. SEARCH SPACE MODELING

The form of the search space depends directly on the values
supplied by the user. With the area coordinates, a rectangular
prism is defined, bounded horizontally by those coordinates and
vertically by the surface and the maximum depth, also supplied by
the user. On the basis of the sonar range, the volume is divided
in cubic cells. 1In this specific case the cell's dimension will
be 20% of the range. This value is used to ensure that 27 cells
will be contained by sonar sphere. For the AUV this will imply a

cell with side length of approximately 20 ft.

C. OBSTACLE MAPPING

Obstacles are mapped as sets of cells. If when surveying the
area the AUV discovers a new obstacle it marks the cell that
contains the obstacle coordinate as unsafe. Without using the
profiling sonar, different cell sizes determine the definition of
the map. The use of the appropriate tool, e.g., the profiling
sonar to allow a reasonable definition of the obstacle, could

provide a better terrain map to the user.

D. MOLTIPLE LAYERS SEARCH
The ability to maneuver 1in three dimensions enhances the
capability of the wvehicle for mine search. On the other hand

maneuvering in three dimensions makes the total area coverage a
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much harder problem, even for humans. To simplify the search the
area is divided into vertical slices or layers where the AUV
maneuvers using a two-dimensional behavior. The robot performs a

complete search of each slice and then moves to the next.

E. SUGGESTED HEURISTICS

1.pefinitions

The basic algorithm will be defined using the vertical slices
approach. Within a slice, the base depth for each search depth is
called the level. The main sub-goal is the one defined at the
opposite side of the volume, at the same level as the starting
point. Consider an XYZ coordinates system, where the x-axis is
the horizontal one along the slice, the z-axis the vertical one
and the y-axis the horizontal axis that crosses the slices. 1If
the starting point is (x1, yl, zl) the main sub-goal would be
(x1+leg's length, y1, zl). Using that coordinate system, three
flags are defined to guide the behavior of the AUV during the
search. The x-motion can assume the values North or South. The
y-motion can assume the values East or West. Finally the z-motion
can assume the values Up or Down. Those flags will be used to
bind the path planning and the movement of the vehicle when a
decision point is reached. A decision point is a point where some
event requires the replamning of the path. The agenda is a stack

where the passive sub-goals are kept until they are reactivated,
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and that has on top the active sub-goal. A cell can assume four
states: unknown, safe, visited, and unsafe. A visited cell is a
safe cell that has been occupied by the AUV. For planning
purposes, unknown and safe cells are considered the same.

2.The Procedure

The vehicle starts the search in a corner of the area,
preferably one at the surface. In the case it is deployed in a
position non-coincident with a corner, it can maneuver to position
itself in a corner. When it starts the search the planner defines
the level's main sub-goal at the opposite side of the area, in the
same slice and at the same depth. A sweeping path is defined to
the main sub-goal. The motion flags are set accordingly. The AUV
starts its movement based on the previously calculated sweeping
path. When a cell in the path is found unsafe, the planner
defines a sub-goal right after that cell, at the same level and
slice (same z and y coordinates) of the unsafe cell, stores the
previous sub-goal on the agenda and calculates, using the sweeping
heuristic, the sweeping path for the new goal. The AUV then
continues to the new cell, following that new sweeping path.
Figure 6 shows an example of a search being conducted by the AUV.
The original path was planned following the bottom line. When the
AUV found an obstacle a sub-goal was generated and a new path was

planned.

24
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SG-1

Figure 6: A sub-goal generation with path replanning

During the search, whenever a cell is found unsafe, whether
or not on the path, the agenda is checked to verify if this cell
is a sub-goal. If so, the sub-goal is taken from the agenda and
forgotten. At the same time, a rendering algorithm is called to
build a polygon with the unsafe cells found between the AUV path
and the sub-goals. If a closed polygon can be formed, the
sub-goal is considered unreachable as are all the other sub-goals
in the agenda that are within the region defined by this polygon.

Whenever the agenda is found empty, the AUV has reached one
of the area limits. It then changes the level according to the
value of z-motion and its present status. The next level will be
the one that is separated from the present level by a distance

equal to two detection ranges. When ready to start the new level,
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the x-motion is reset and the whole process begins again. If the
agenda is made empty by means of a closed polygon, a new sub-goal
will be created at the next level, one cell after the polygon.
After sweeping a slice the AUV proceeds to next-slice, starting
the whole process again. For the changes of level and slice the
path is planned wusing a hill-climbing procedure. The
hill-climbing procedure is a depth-first search modified to sort
the choices using the estimated distance to the goal [Ref. 17].
The path is replanned every time a new obstacle is found on the
path. After all slices are searched, the algorithm calculates the

final fraction of area searched.

Figure 7: An obstacle containing an unreachable goal
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F. SUMMARY

The world is modeled as a three dimensional matrix where a
cell is comnected to its 26 neighbors. The obstacle mapping
resolution is restricted by the size of each cell. To simplify
the algorithm the vehicle has only two degrees of freedom for each
maneuver. The proposed algorithm is based on a high level ladder
search and the procedure that plans the sweeping path keeps the
planned path as close as possible to the ladder pattern. Obstacle
avoidahce and mapping are performed by establishing sub-goals and

pursuing them to define the shape of the obstacle.
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V. EXPERIMENTAL RESULTS

A. INTRODUCTION

In order to evaluate properly the algorithm and to set a
basis for future improvements, different scenarios were used to
test the algorithm. The simulation was performed using the Lisp
[Ref. 18] code contained in Appendix A. A random mine field
generator was also created to allow the use of Monte Carlo
simulation techniques. Assessments of the fraction of area
searched and total amount of resources needed to perform the
missions were made. For the purpose of comparison, an
implementation of mine search using the ladder strategy as the
high-level behavior and pure hill-climbing for sweeping the levels
was developed. The Underwater Virtual World was also used to
evaluate and improve the algorithm [Ref. 19]. Figure 8 shows the

AUV performing a mission in the Underwater Virtual World.

Figure 8: The AUV in the UVW showing an entry into a
simulated pipe
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B. FRACTION OF AREA SEARCHED

The fraction of area searched (FAS) achieved in most of the
instances was very high. The average value of 0.78 with an
standard deviation of 0.01 was obtained using the most probable
scenarios. None of the runs that used from 1 to 50 mines, medium
obstacles and mountains, produced a FAS smaller than 0.70. The
FAS was substantially affected only when the AUV had to face very
large obstacles. The main reason for that reduction was the
absence of the rendering procedure as described in the previous
chapter. Although the present implementation of the algorithm
avoids infinite loops that could be generated by allocating a goal
inside a large obstacle, through the use of a subgoal elimination
techinique, this occurrence usually reduces the FAS since the
cells inside the obstacle continue to be considered unknown cells.
Figure 9 shows a large obstacle with the sub-goals caused by it.
Sub-goal number two (SG-2) is the first sub-goal generated due to
the obstacle. When the AUV returns to the same level as the SG-2,
it pops out SG-2, and all other goals above it, from the agenda.
SG-2 and the cell to its right were not inspected by the sonar and
will remain as unknown cells.

Another reason to have a reduction on the FAS is the
proximity to the searched volume boundaries. Whenever the AUV is

less than the leg spacing distance from a boundary it considers
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the slice as searched and proceeds to the next slice. This was an
implementation choice and can be solved in three different ways —
by dividing the volume in a number of cells multiple of the leg
spacing in each dimension, by adjusting the leg spacing or by

forcing a sweep of the volume edge whenever necessary.

Figure 9: An obstacle and the sub-goals (SG-x) generated to
avoid it

Figure 10 displays a graph of the FAS against the number of
mines for the sweeping heuristic and the hill-cliwbing procedure.
This graph is a result of 1500 replications of each algorithm. As
shown in the graph, the FAS decreases when the number of mines
increased. This decrease is a consequence of the formation of

virtual barriers or walls due to the proximity of mines. In this
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situation the hill-climbing procedure starts to leave shadows as
previously shown in Figure 5. The sweeping heuristic also had

better performance in scenarios with mountains and other

obstacles.
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Figure 10: Graph of Number of Mines vs. FAS

Figures 11 and 12 show the behavior of both algorithms in a
mine field in a no mountain scenaric and in a two mountain

scenario respectively.
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Figure 11: Graph of Number of Mines vs. FAS in a no mountain
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Figure 12: Graph of Number of Mines vs. FAS in a two mountain

scenario
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C. RESOURCES UTILIZATION

For each setting, the amount of resources needed to perform
the mission was evaluated. The simplest case, with no mines or
obstacles, i.e., the AUV needed just to cover the whole volume
without obstacle avoidance maneuvers, required 120.0 UR. The
worst case tested, where 50 mines were randomly placed in a two
mountain scenario, required an average of 123.99 UR with an
standard deviation of 7.80 UR. In the same scenario, the
hill-climbing procedure required an average of 131.97 with an
standard deviation of 15.03 UR. The increase in the number of
mines implied an increase in the amount of resources needed, as

shown in Figure 13.
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Figure 13: Graph of the Number of Mines vs. UR
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The comparison between the sweeping heuristic and the
hill-climbing procedure showed that the latter needs more
resources to achieve the same results. Figures 14 and 15 show the
behavior of both algorithms in a mine field in a no mountain

scenario and in a two mountain scenario respectively.
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Figure 14: Graph of the Number of Mines vs. UR in a no
mountain scenario

Large obstacles did not have a big impact on the amount of
resources required. Due to the structure of the algorithm,

sometimes large obstacles have a smaller influence on the reguired
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resources than an equivalent number of small obstacles.
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Figure 15: Graph of the Number of Mines vs. UR in a two
mountain scenario

D. SUMMARY

The simulations of the algorithm were sufficient to gain an
overall idea of its performance and behavior. The evaluation of
the fraction of area searched and the amount of resources required
are important both to judge the algorithm and to establish ground
for future developments. The comparison with the performance of a
hill-climbing algorithm is important to obtain a fair evaluation

of the algorithm.
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VI. RECOMMENDATIONS AND CONCLUSIONS

A. INTRODUCTION

As was already known, the problem is very hard. The
difficulty of searching for mines in an unknown envirornment allied
to the difficulty of guiding a robot made the algorithm

complicated.

B. THE TOOLS

It was certainly very helpful to use Lisp as the language for
development . In addition to its natural generality and
flexibility that has made Lisp one of the main artificial
intélligence languages, the use of an interpreter dramatically
facilitates the development and testing. A similar attempt could
be made using CLIPS [Ref. 20]. Although CLIPS is not so flexible
as Lisp, its rule oriented approach may be a good help in modeling
the decision making process.

It is essential that future attempts to develop a new
algorithm, or to improve this one, use the Underwater Virtual
World (UWW) and the AUV simulator. Besides the robot monitoring

capabilities of the simulator, it gives the developer an
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interactive wvisual assessment of the behavior of the robot and

therefore the behavior of the algorithm.

C. THE PROCEDURE

The algorithm that was developed is a first attempt to solve
the problem and is certainly not adequate for all possible
situations. More cases have to be investigated. The effect of
cell size on fraction of the area searched and resources
utilization is an important topic that deserves special attention.

The code can probably be improved and the use of other
languages and artificial intelligence techniques can open new
doors. The use of the profiling sonar can also affect further

developments and must be investigated.

D. THE AUV INTERFACE

To have this algorithm driving the wvehicle an interface
between the Tactical level, where this algorithm resides, and the
Execution level has to be defined. The required commnications
software has already been developed by the AUV group. It 1is
presently possible to interchange messages between the Tactical
and the Execution level, from within the Lisp interpreter. This
code is included as Appendix B.

The driving commands have to be issued by the function
move-to-waypoint described in Appendix A. The AUV commands

described in reference 19 can be used.
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The algorithm works with a discrete representation of the
world. Therefore, a function is needed to define the
correspondence between cells and real world waypoints. Another
function is required to perform the sonar search. That function
has to send the sonar the appropriate commands, read the related
responses and map it to the algorithm representation of the world.
This is done by designating each cell that has-an echo associated
with it an unsafe cell. This function has to replace the

look-around function existent in the code.

E. SUMMARY

As any new technology, the mine search using robots offers
many possibilities for research. The development of optimization
methods, artificial intelligence techniques, virtual reality and
computational resources will provide better solutions to the
problem. The evaluation of different tools and techniques has to
be used to provide insight for improving the solutions.

The path for linking the algorithm with the real world, i.e.,
the AUV, is defined. Using the available tools it is possible to
use the simulator to perform realistic evaluations of the

algorithm behavior without risking the vehicle.
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APPENDIX A. THE MINE SEARCH SOURCE CODE

This Appendix contains the Lisp code that implements the
algorithm developed in this thesis.
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Implementation of AUVMINE in Lisp

Author: Jose A. Rodrigues Nt.

Project: A Mine Searcher for AUV's - Master Thesis NPGS - 1994

; Date: September 1994

; Version: 0.5

Compiler: Franz Allegro CL/PC version 1.0

; Variable, types and structures definitions

(defvar *agenda* nil) ;; store the sub-goal to be pursued next. behaves almost as a stack.
(defvar *x-motion* 1) ;; direction of search in the x-axis: 1= north, -1 = south
(defvar *y-motion* 1) ;; direction of search in the y-axis: 1 = east. -1 = west

(defvar *z-motion* 1) ;; direction of search in the z-axis: 1= down, -1 = up

(defvar *goal* nil) ;; sub-goal waypoint being presently pursued

(defvar *initial-waypoint* '(1 1 1)) ;; starting waypoint

(defvar *final-waypoint* '(9 9 9)) ;; final waypoint

(defvar *level-goal* nil) ;; final waypoint to be pursued in each level

(defvar *used-path* nil) ;; ordered collection of visited nodes until the present position
(defvar *sweep-path* '()) ;; sequence of nodes to be traversed to reach the sub-goal
(defvar *base-level* nil) ;; level(depth) being sweep

(defvar *virtual-obstacle-list* nil)
;> A virtual obstacle is a cell from which backtracking is the only possible move.

(defvar *hill-goal* nil)

(deftype auv-status () '(member sweeping-level changing-level changing-slice area-done))
;> possible auv situations
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(defstruct auv - structure to define an auv and its location
(x-position O :type integer)
(y-position O :type integer)
(z-position O :type integer)
(status 'sweeping-level :type auv-status))

(defvar *phoenix* (make-auv)) ;; our auv
(deftype cell-state () '(member unknown safe visited unsafe)) ;; possible states of a cell

(defvar *area*
(make-array '(11 11 11)
-element-type 'cell-state
;initial-element 'safe))

(defvar *auv-map*
(make-array '(11 11 11)
-element-type 'cell-state
initial-element 'unknown))
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; Implementation of AUVMINE in Lisp

; Author: Jose A. Rodrigues Nt.

; Project: A Mine Searcher for AUV's - Master Thesis NPGS - 1994
; Date: September 1994

; Version: 0.5

; Compiler: Franz Allegro CL/PC version 1.0

; Function init-search: Initializes all the variables needed for the algorithm.
; Only called once.

; Function restart-search: Reinitialize some of the variables at each sweep-area call.

; Function define-area: Set all the cells beyond the area limits as obstacles.
; Only called for the whole area.

; Function init-agenda: Prepare the agenda, initializing it with the first sub-goal for
; the present search.

; Function set-level-goal: Defines the the sub-goal at the end of the level.

(defun init-search (initial-waypoint final-waypoint)
(define-area)
(setf (auv-x-position *phoenix*) (car initial-waypoint))
(setf (auv-y-position *phoenix*) (cadr initial-waypoint))
(setf (auv-z-position *phoenix*) (caddr initial-waypoint))
(setf *x-motion* (/ (- (car final-waypoint) (car initial-waypoint))
(abs (- (car final-waypoint) (car initial-waypoint)))))
(setf *y-motion* (/ (- (cadr final-waypoint) (cadr initial-waypoint))
(abs (- (cadr final-waypoint) (cadr initial-waypoint)))))
(setf *z-motion* (/ (- (caddr final-waypoint) (caddr initial-waypoint))
(abs (- (caddr final-waypoint) (caddr initial-waypoint)))))
(setf (auv-status *phoenix*) 'sweeping-level)
(setf *sweep-path* '())
(setf *used-path* '())
(init-agenda initial-waypoint final-waypoint))
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(defun restart-search (initial-waypoint final-waypoint)
- needed to restart a search when it's called for a subarea.
;; Init-search can not be used since the AUV will already be in position
- and *used-path* contains the previous search log.
(setf *x-motion* (/ (- (car final-waypoint) (car initial-waypoint))
(abs (- (car final-waypoint) (car initial-waypoint)))))
(setf (auv-status *phoenix*) 'sweeping-level)
(setf *sweep-path* '())
(init-agenda initial-waypoint final-waypoint))

(defun define-area ()
- set all nodes in the boundary as obstacles
- it is defined "hardwired" now but could use the car and cdr
;; from initial and final waypoints
(loop
withx =0
and y=0
and z=0
for x in '(0 10)
do (loop for y from 0 to 10
do (loop for z from 0 to 10
do (setf (aref *auv-map* x y z) 'unsafe)
(setf (aref *area* x y z) 'unsafe))))

(loop
with x=0
and y= 0
and z=0

for yin'(0 10)
do (loop for x from 0 to 10
do (loop for z from 0 to 10
do (setf (aref *auv-map* x y z) 'unsafe)
(setf (aref *area* x y z) 'unsafe))))
(loop
with x=0
and y=0
and z=0
for zin '(0 10)
do (loop for y from 0 to 10
do (loop for x from 0 to 10
do (setf (aref *auv-map* x y z) 'unsafe)
(setf (aref *area* x y z) 'unsafe)))))
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(defun init-agenda (initial-waypoint final-waypoint)
;; defines the first level goal and inserts it into the agenda
(setf *agenda* nil)
(push (set-level-goal initial-waypoint final-waypoint) *agenda*))

(defun set-level-goal (initial-waypoint final-waypoint)

(setf *level-goal* (cons (car final-waypoint) (cons (cadr initial-waypoint)
(cons (caddr initial-waypoint) nil)))))
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Implementation of AUVMINE in Lisp

. Author: Jose A. Rodrigues Nt.

Project: A Mine Searcher for AUV’s - Master Thesis NPGS - 1994
; Date: September 1994

: Version: 0.5

Compiler: Franz Allegro CL/PC version 1.0

(setf *default-pathname-defaults* #P"D:\ALLEGRO\AUVMINE\\”)
(load “auv_var.cl”) ;; loads the variables’ definitions

(load “auv_look.cl”) ;; loads the look-around function

(load “auv_chec.cl”) ;; loads the check-plane function

(load “auv_init.cl”) ;; loads the initializaton functions

(load “auv_splt.cl”) ;; loads the split-area function

(load “auv_tran.cI”) ;; loads the transit function

(load “auv_larg.cl”) ;; loads the large-obstacle function

(load “auv_wall.cl”) ;; loads the check-wall function

(load “auv_hill.cI”) ;; loads the hill-path function

(load “auv_hil2.cI”) ;; loads the hill-path2 function

(load “auv_prob.cl”) ;; loads the calc-prob function

(load “auv_sim.cl”) ;; loads the functions that produce data to be analysed at the UVW

(load “auv_cost.cl”) ;; loads the cost evaluation function

(setf *default-pathname-defaults* #P”D:WALLEGROW")

:; legal-movep has also to check if location is inside a closed polygon. Not implemented.
(defun legal-movep (x-location y-location z-location)
;; checks the map for a prospect move. avoids circle.

(if (not (equal (aref *auv-map* x-location y-location z-location) ‘unsafe)) t))
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(defun find-path (sub-goal)
;; find the best path from the current position to the present sub-goal
(do* ((planned-step (list (auv-x-position *phoenix*) (auv-y-position *phoenix*)
(auv-z-position *phoenix*))
(cond ((plusp (/ (- (car planned-step) (car sub-goal)) *x-motion*))
(pop *agenda*)
(setq sub-goal (car *agenda*))
(setq *sweep-path* nil)
(setq planned-step (list (auv-x-position *phoenix*)
(auv-y-position *phoenix*)
(auv-z-position *phoenix*)))
(car (update-sweep-path (best-move planned-step))))
(t (car (update-sweep-path (best-move planned-step)))))))
((equal planned-step sub-goal) (setf *sweep-path* (reverse *sweep-path*)))))

(defun plan-path (sub-goal)
(cond
((equal (auv-status *phoenix*) ‘changing-level)
(hill-path (list (auv-x-position *phoenix*) (auv-y-position *phoenix*)
(auv-z-position *phoenix*)) sub-goal))
((equal (auv-status *phoenix*) ‘changing-slice)
(hill-path2 (list (auv-x-position *phoenix*) (auv-y-position *phoenix*)
(auv-z-position *phoenix*)) sub-goal))
(t (find-path sub-goal))))
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(defun best-move (position)
- define the best move from position according to our rules.
(case (auv-status *phoenix™*)
(‘sweeping-level
(if (equal (caddr position) (caddr *level-goal*))
(cond
((legal-movep (+ (car position) *x-motion*) (cadr position)
(caddr position))
(setf position (cons (+ (car position) *x-motion*) (cdr position))))
((legal-movep (+ (car position) *x-motion*) (cadr position)
(+ (caddr position) *z-motion*))
(setf position (cons (+ (car position) *x-motion*)
(cons (cadr position) (cons (+ (caddr position) *z-motion*)

nil)))))
((legal-movep (car position) (cadr position)
(+ (caddr position) *z-motion*))
(setf position (cons (car position) (cons (cadr position)
(cons (+ (caddr position) *z-motion*) nil)))))
((legal-movep (- (car position) *x-motion*) (cadr position)
(+ (caddr position) *z-motion*))
(setf position (cons (- (car position) *x-motion*)
(cons (cadr position) (cons (+ (caddr position) *z-motion*)

nil)))))
((legal-movep (- (car position) *x-motion*) (cadr position)
(caddr position))
(setf position (cons (- (car position) *x-motion*) (cdr position))))
((legal-movep (+ (car position) *x-motion*) (cadr position)
(- (caddr position) *z-motion*) )
(setf position (cons (+ (car position) *x-motion*)
(cons (cadr position) (cons (- (caddr position) *z-motion*)
nil)))))
((legal-movep (car position) (cadr position)
(- (caddr position) *z-motion*))
(setf position (cons (car position) (cons (cadr position)
(cons (- (caddr position) *z-motion*) nil)))))
((legal-movep (- (car position) *x-motion*) (cadr position)
(- (caddr position) *z-motion*))
(setf position (cons (- (car position) *x-motion*)
(cons (cadr position) (cons (- (caddr position) *z-motion*)
nil)))))
(t print “wrong find-path”™))
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(cond
((and (legal-movep (car position) (cadr position)
(- (caddr position) *z-motion*))
(not (equal (aref *auv-map* (car position) (cadr position)
(- (caddr position) *z-motion*))  visited)))
(setf position (cons (car position) (cons (cadr position)
(cons (- (caddr position) *z-motion*) nil)}))))
((legal-movep (+ (car position) *x-motion*) (cadr position)
(- (caddr position) *z-motion*))
(setf position (cons (+ (car position) *x-motion*)
(cons (cadr position) (cons (- (caddr position) *z-motion*)
nil)))))
((legal-movep (+ (car position) *x-motion*) (cadr position)
(caddr position))
(setf position (cons (+ (car position) *x-motion*) (cdr position))))
((legal-movep (+ (car position) *x-motion*) (cadr position)
(+ (caddr position) *z-motion*))
(setf position (cons (+ (car position) *x-motion*)
(cons (cadr position) (cons (+ (caddr position) *z-motion*)
nil)))))
((legal-movep (car position) (cadr position)
(+ (caddr position) *z-motion*))
(setf position (cons (car position) (cons {cadr position)
(cons (+ (caddr position) *z-motion*) nil)))))
((legal-movep (- (car position) *x-motion*) (cadr position)
(+ (caddr position) *z-motion*))
(setf position (cons (- (car position) *x-motion*)
(cons (cadr position) (cons (+ (caddr position) *z-motion*)
nil)))))
((legal-movep (- (car position) *x-motion*) (cadr position)
(caddr position))
(setf position (cons (- (car position) *x-motion*) (cdr position))))
((legal-movep (- (car position) *x-motion*) (cadr position)
(- (caddr position) *z-motion*))
(setf posttion (cons (- (car position) *x-motion*)
(cons (cadr posttion) (cons (- (caddr position) *z-motion*)
nil)))))
(t print “wrong find-path”))))
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(‘changing-level
(if (equal (car position) (car *level-goal*))
(cond
((legal-movep (+ (car position) *x-motion*) (cadr position)
(+ (caddr position) *z-motion*))
(setf position (cons (+ (car position) *x-motion*)
(cons (cadr position) (cons (+ (caddr position) *z-motion*)

nil)))))
((legal-movep (car position) (cadr position)
(+ (caddr position) *z-motion*))
(setf position (cons (car position) (cons (cadr position)
(cons (+ (caddr position) *z-motion*) nil)))))
((legal-movep (- (car position) *x-motion*) (cadr position)
(+ (caddr position) *z-motion*))
(setf position (cons (- (car position) *x-motion*)
(cons (cadr position) (cons (+ (caddr position) *z-motion*)
ni)))))
((legal-movep (- (car position) *x-motion*) (cadr position)
(caddr position))
(setf position (cons (- (car position) *x-motion*) (cdr position))))
((legal-movep (- (car position) *x-motion*) (cadr position)
(- (caddr position) *z-motion*))
(setf position (cons (- (car position) *x-motion*)
(cons (cadr position) (cons (- (caddr position) *z-motion*)
ni)))))
((legal-movep (car position) (cadr position)
(- (caddr position) *z-motion*))
(setf position (cons (car position) (cons (cadr position)
(cons (- (caddr position) *z-motion*) nil)))))
((legal-movep (- (car position) *x-motion*) (cadr position)
(- (caddr position) *z-motion*) )
(setf position (cons (+ (car position) *x-motion*)
(cons (cadr position) (cons (- (caddr position) *z-motion*)
nil)))))

((legal-movep (+ (car position) *x-motion*) (cadr position)

(caddr position))
(setf position (cons (+ (car position) *x-motion*) (cdr position))))
(t print “wrong find-path”
p




(cond
((legal-movep (+ (car position) *x-motion*) (cadr position)
(caddr position))
(setf position (cons (+ (car position) *x-motion*) (cdr position))))
((legal-movep (+ (car position) *x-motion*) (cadr position)
(+ (caddr position) *z-motion*))
(setf position (cons (+ (car position) *x-motion*)
(cons (cadr position) (cons (+ (caddr position) *z-motion*)
nil)))))
((legal-movep (car position) (cadr position)
(+ (caddr position) *z-motion*))
(setf position (cons (car position) (cons (cadr position)
(cons (+ (caddr position) *z-motion*) nil)))))
((legal-movep (- (car position) *x-motion*) (cadr position)
(+ (caddr position) *z-motion*))
(setf position (cons (- (car position) *x-motion*)
(cons (cadr position) (cons (+ (caddr position) *z-motion*)

nil)))))
((legal-movep (- (car position) *x-motion*) (cadr position)
(caddr position))
(setf position (cons (- (car position) *x-motion*) (cdr position))))
((legal-movep (- (car position) *x-motion*) (cadr position)
(- (caddr posttion) *z-motion*))
(setf position (cons (- (car position) *x-motion*)
(cons (cadr position) (cons (- (caddr position) *z-motion*)
nil)))))
((legal-movep (car position) (cadr position)
(- (caddr posttion) *z-motion*))
(setf position (cons (car position) (cons (cadr position)
(cons (- (caddr position) *z-motion*) nil)))))
((legal-movep (+ (car position) *x-motion*) (cadr position)
(- (caddr position) *z-motion*) )
(setf position (cons (+ (car position) *x-motion*)
(cons (cadr position) (cons (- (caddr position) *z-motion*)
nil)))))
(t print “wrong find-path™))))
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(‘changing-slice
(if (equal (car position) (car *level-goal*))
(cond
((legal-movep (+ (car position) *x-motion*)
(+ (cadr position) *y-motion*) (caddr position))
(setf position (cons (+ (car position) *x-motion*)
(cons (+ (cadr position) *y-motion*) (cons (caddr position)
nil)))))
((legal-movep (car position) (+ (cadr position) *y-motion*)
(caddr position))
(setf position (cons (car position)
(cons (+ (cadr position) *y-motion*) (cons (caddr position)

nil)))))
((legal-movep (- (car position) *x-motion*)
(+ (cadr position) *y-motion*) (caddr position))
(setf position (cons (- (car position) *x-motion*)
(cons (+ (cadr position) *y-motion*) (cons (caddr position)
nil)))))
((legal-movep (- (car position) *x-motion*) (cadr position)
(caddr position))
(setf position (cons (- (car position) *x-motion*)
(cons (cadr position) (cons (caddr position) nil)))))
((legal-movep (- (car position) *x-motion*)
(- (cadr position) *y-motion*) (caddr position))
(setf position (cons (- (car position) *x-motion*)
(cons (- (cadr position) *y-motion*) (cons (caddr position)
nil)))))
((legal-movep (car position) (- (cadr position) *y-motion*)
(caddr position))
(setf position (cons (car position)
(cons (- (cadr position) *y-motion*) (cons (caddr position)
nil)))))
((legal-movep (+ (car position) *x-motion*)
(- (cadr position) *y-motion*) (- (caddr position) *z-motion*) )
(setf position (cons (+ (car position) *x-motion*)
(cons (- (cadr position) *y-motion*)
(cons (- (caddr position) *z-motion*) nil)))))
((legal-movep (+ (car position) *x-motion*) (cadr position)
(caddr position))
(setf position (cons (+ (car position) *x-motion*) (cdr position))))
(t print “wrong find-path™))




(cond
((legal-movep (+ (car position) *x-motion*) (cadr position)
(caddr position))
(setf position (cons (+ (car position) *x-motion*) (cdr position))))
((legal-movep (+ (car position) *x-motion*)
(+ (cadr position) *y-motion*) (caddr position))
(setf position (cons (+ (car position) *x-motion*)
(cons (+ (cadr position) *y-motion*) (cons (caddr position)
nil)))))
((legal-movep (car position) (+ (cadr position) *y-motion*)
(caddr position))
(setf position (cons (car position)
(cons (+ (cadr position) *y-motion*) (cons (caddr position)
nil)))))
((legal-movep (- (car position) *x-motion*)
(+ (cadr position) *y-motion*) (caddr position))
(setf position (cons (- (car position) *x-motion*)
(cons (+ (cadr position) *y-motion*) (cons (caddr position)
nil)))))
((legal-movep (- (car position) *x-motion*) (cadr position)
(caddr posttion))
(setf position (cons (- (car position) *x-motion*)
(cons (cadr position) (cons (caddr position) nil)))))
((legal-movep (- (car position) *x-motion*)
(- (cadr position) *y-motion*) (caddr position))
(setf position (cons (- (car position) *x-motion*)
(cons (- (cadr position) *y-motion*) (cons (caddr position)
nil)))))
((legal-movep (car position) (- (cadr position) *y-motion*)
(caddr position))
(setf position (cons (car position)
(cons (- (cadr position) *y-motion*) (cons (caddr position)l)
nil)))))
((legal-movep (+ (car position) *x-motion*)
(- (cadr position) *y-motion*) (- (caddr position) *z-motion*) )
(setf position (cons (+ (car position) *x-motion*)
(cons (- (cadr position) *y-motion*)
(cons (- (caddr position) *z-motion*) nil)))))
(t print “wrong find-path”))))))

(defun update-sweep-path (new-step)
(setf *sweep-path* (cons new-step *sweep-path*)))
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(defun move-to-waypoint (location) ;; changes the auv position to the location
(setf (auv-x-position *phoenix*) (car location))
(setf (auv-y-position *phoenix*) (cadr location))
(setf (auv-z-position *phoenix*) (caddr location))
(setf (aref *auv-map* (car location) (cadr location) (caddr location)) “visited)
(setf *used-path* (cons (cons (car location) (cons (cadr location)
(cons (caddr location) nil))) *used-path*)))

(defun next-safe () ;; checks if the next move in the planned path is safe

(legal-movep (car (car *sweep-path*)) (cadr (car *sweep-path*))
(caddr (car *sweep-path*))))
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(defun sweep-area (initial-waypoint final-waypoint)
(restart-search initial-waypoint final-waypoint)
(loop ;; area loop. will get out when whole area is done
until (equal (auv-status *phoenix*) ‘area-done)
do
(loop ;; level loop. when we get out of it we have to change status
until (null *agenda*)
do (cond ((and (legal-movep (car (car *agenda*)) (cadr (car *agenda*))
(caddr (car *agenda*)))
(not(left-back (car *agenda*))))
(plan-path (car *agenda*))
(loop ;; do the real work in the level, moving and replanning
;; when needed
until (equal (cons (auv-x-position *phoenix*)
(cons (auv-y-position *phoenix*)
(cons (auv-z-position *phoenix*) nil)))
(car *agenda*))
do (unless (legal-movep (car (car *agenda*))
(cadr (car *agenda*)) (caddr (car *agenda*)))
(pop *agenda*)
(plan-path (car *agenda*)))
do (cond ((left-back (nth (- (list-length *agenda*) 2) *agenda*))
(large-obstacle)
(plan-path (car *agenda*))))
when (next-safe)
do (move-to-waypoint (pop *sweep-path*))
;; move to next waypoint
and do (look-around) ;; update map
and do (if (check-wall)
(split-area initial-waypoint final-waypoint))
else
do (push (new-subgoal) *agenda*)
and do (setf *sweep-path* ‘nil)
and do (if (check-wall)
(split-area initial-waypoint final-waypoint)
(plan-path (car *agenda*))))))
(pop *agenda*))
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(let*
((north-limit (max (car initial-waypoint) (car final-waypoint)))
(south-limit (min (car initial-waypoint) (car final-waypoint)))
(up-limit (min (caddr initial-waypoint) (caddr final-waypoint)))
(down-limit (max (caddr initial-waypoint) (caddr final-waypoint)))
(east-limit (max (cadr initial-waypoint) (cadr final-waypoint)))
(west-limit (min (cadr initial-waypoint) (cadr final-waypoint))}))
(change-status north-limit south-limit up-limit down-limit

’ east-limit west-limit))))

(defun new-subgoal ()
(case (auv-status *phoenix*)
(‘sweeping-level (cons (+ (car (car *sweep-path*)) *x-motion*)
(cons (cadr (car *sweep-path*))
(cons (caddr (car *sweep-path*)) nil))))
(‘changing-level (cons (car (car *sweep-path*)) (cons (cadr (car *sweep-path*))
(cons (+ (caddr (car *sweep-path*)) *z-motion*) nil))))
(‘changing-slice (cons (car (car *sweep-path*))
(cons (+ (cadr (car *sweep-path*)) *y-motion*)
(cons (caddr (car *sweep-path*)) nil))))))

(defun change-status (north-limit south-limit up-limit down-limit east-limit west-limit)
;; analyses the auv status and location and change it accordingly
(case (auv-status *phoenix*)
(‘sweeping-level
(cond
((and (>= (+ (caddr *level-goal*) (* 3 *z-motion*)) up-limit)
(<= (+ (caddr *level-goal*) (* 3 *z-motion*)) down-limit))
(push (cons (car *level-goal*) (cons (cadr *level-goal*)
(cons (+ (caddr *level-goal*) (* 3 *z-motion*)) nil))) *agenda*)
(setf (auv-status *phoenix*) ‘changing-level))
((and (or (< (+ (caddr *level-goal*) (* 3 *z-motion*)) up-limit)
(> (+ (caddr *level-goal*) (* 3 *z-motion*)) down-limit))
(and (>= (+ (cadr *level-goal*) (* 3 *y-motion*)) west-limit)
(<= (+ (cadr *level-goal*) (* 3 *y-motion*)) east-limit)))
(push (cons (car *level-goal*) (cons (+ (cadr *level-goal*)
(* 3 *y-motion*)) (cons (caddr *level-goal*) nil))) *agenda*)
(setf (auv-status *phoenix*) ‘changing-slice))
(t (setf (auv-status *phoenix*) ‘area-done))))




(‘changing-level
(if (plusp *x-motion*)
(setf *level-goal* (cons south-limit (cons (cadr *level-goal*)
(cons (+ (caddr *level-goal*) (* 3 *z-motion*)) nil))))
(setf *level-goal* (cons north-limit (cons (cadr *level-goal*)
(cons (+ (caddr *level-goal*) (* 3 *z-motion*)) nil)))))
(push *level-goal* *agenda*)
(setf *x-motion* (* -1 *x-motion*))
(setf (auv-status *phoenix*) ‘sweeping-level))
(‘changing-slice
(f (plusp *x-motion*)
(setf *level-goal* (cons south-limit (cons (+ (cadr *level-goal*)
(* 3 *y-motion*)) (cons (caddr *level-goal*) nil))))
(setf *level-goal* (cons north-limit (cons (+ (cadr *level-goal*)
(* 3 *y-motion*)) (cons (caddr *level-goal*) nil)))))
(push *level-goal* *agenda*)
(setf *x-motion* (* -1 *x-motion*))
(setf *z-motion* (* -1 *z-motion*))
(setf (auv-status *phoenix*) ‘sweeping-level))))

(defun search-mine (initial-waypoint final-waypoint)
(init-search initial-waypoint final-waypoint)
(sweep-area initial-waypoint final-waypoint)
(pprint (calc-prob *auv-map*))

(build-sim-path (reverse *used-path*))
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- Implementation of a Hillclimb procedure for the AUV mine search algorithm

Author: Jose A. Rodrigues Nt.

Project: A Mine Searcher for AUV's - Master Thesis NPGS - 1994
Date: September 1994

Version: 0.5

Compiler: Franz Allegro CL/PC version 1.0

- Remarks: This implementation is an adaptation of the Hillclimb-array code from
the class CS4314 Symbolic Computing conducted by Dr. Robert McGhee.

2

(defun obstaclep (location) ; location is *auv-map* index list '(row column)
(if (equal (aref *auv-map* (first location) (second location) (third location)) 'unsafe)

1)

(defun legal-move-list (location)
(remove nil (list (up-movep location) (down-movep location)
(north-movep location) (south-movep location))))

(defun hill-legal-movep (location)
(if (and (not (obstaclep location))
(not (member location *virtual-obstacle-list* :test #equal))
(not (member location *sweep-path* :test #equal))) location))

(defun north-movep (location)
(hill-legal-movep (cons (1+ (first location)) (rest location))))

(defun south-movep (location)
(hill-legal-movep (cons (1- (first location)) (rest location))))

(defun up-movep (location)
(hill-legal-movep (list (first location) (second location) (1- (third location)))))

(defun down-movep (location)
(hill-legal-movep (list (first location) (second location) (1+ (third location)))))

(defun evalsort (list) (sort list #'closer-to-goalp))

(defun distance-to-goal (location)
(let ((deltax (- (first location) (first *goal*)))
(deltaz (- (third location) (third *goal*))))
(sqrt(+ (* deltax deltax) (* deltaz deltaz)))))
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(defun closer-to-goalp (location1 location2) ;Uses global variable *hill-goal*.
(if (< (distance-to-goal locationl) (distance-to-goal location2)) t))

(defun move-from (location)
(cond ((null (legal-move-list location)) (backtrack-from location))
(t (make-best-move-from location))))

(defun make-best-move-from (location)
(let ((best-move (first (evalsort (legal-move-list location)))))
(setf *sweep-path* (cons location *sweep-path*)) best-move))

(defun backtrack-from (location)
(push location *virtual-obstacle-list*)
(pop *sweep-path*))

(defun hill-path (start goal)
(setf *sweep-path* nil)
(setf *virtual-obstacle-list* nil)
(setf *goal* goal)
(do ((location start (move-from location)))
((or (equal location goal) (null location))
(if (equal location goal) (push location *sweep-path*))))
(setf *sweep-path* (reverse (butlast *sweep-path*))))




Implementatlon of a Hillclimb procedure for the AUV mine search algorithm
Author: Jose A. Rodrigues Nt.
Project: A Mine Searcher for AUV's - Master Thesis NPGS - 1994
Date: September 1994
Version: 0.5
Compiler: Franz Allegro CL/PC version 1.0

- Remarks: This implementation is an adaptation of the Hillclimb-array code from

; the class CS4314 Symbolic Computing conducted by Dr. Robert McGhee.

Functlon hill-path2: uses a hili-climbing procedure to find the shortest path between
two points located in different slices. Maneuvers only in X and Y.

?

(defun legal-move-list2 (location)
(remove nil (list (east-movep location) (west-movep location)
(north-movep location) (south-movep location))))

(defun east-movep (location)
(hill-legal-movep (list (first location) (1+ (second location)) (third location))))

(defun west-movep (location)
(hill-legal-movep (list (first location) (1- (second location)) (third location))))

(defun distance-to-goal2 (location)
(let ((deltax (- (first location) (first *goal*)))
(deltay (- (second location) (second *goal*))))
(sqrt(+ (* deltax deltax) (* deltay deltay)))))

(defun closer-to-goal2p (location] location2) ;Uses global variable *hill-goal*.
(if (< (distance-to-goal2 location1) (distance-to-goal2 location2)) t))

(defun move-from2 (location)
(cond
((null (legal-move-list2 location)) (backtrack-from location))
(t (make-best-move-from2 location))))

(defun make-best-move-from2 (location)
(let
((best-move (first (evalsort (legal-move-list2 location)))))
(setf *sweep-path* (cons location *sweep-path*)) best-move))




(defun hill-path2 (start goal)
(setf *sweep-path* nil)
(setf *virtual-obstacle-list* nil)
(setf *goal* goal)
(do ((location start (move-from2 location)))
((or (equal location goal) (null location))
(if (equal location goal) (push location *sweep-path*))))
(setf *sweep-path* (reverse (butlast *sweep-path*))))
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Implementation of AUVMINE in Lisp

Author: Jose A. Rodrigues Nt.

Project: A Mine Searcher for AUV's - Master Thesis NPGS - 1994
; Date: September 1994

Version: 0.5

Compiler: Franz Allegro CL/PC version 1.0

Function look-around: updates the auv map based on the area map

(defun look-around () ;;
(case (auv-z-position *phoenix*)
(0 (check-plane (auv-z-position *phoenix*))
(check-plane (+ (auv-z-position *phoenix*) 1)))
(8 (check-plane (auv-z-position *phoenix*))
(check-plane (- (auv-z-position *phoenix*) 1)))
(otherwise (check-plane (auv-z-position *phoenix*))
(check-plane (+ (auv-z-position *phoenix*) 1))
(check-plane (- (auv-z-position *phoenix*) 1)))))




;  Implementation of AUVMINE in Lisp

Author: Jose A. Rodrigues Nt.

Project: A Mine Searcher for AUV's - Master Thesis NPGS - 1994
Date: September 1994

; Version: 0.5

; Compiler: Franz Allegro CL/PC version 1.0

; Function check-plane: Copies the 9 cells centered at the AUV x and y position at

the corresponding level, from the area-map to the auv-map. This is the function that
emulates the sonar. The area-map is the representation of the area and is what is seen
; by the AUV sonar.

(defun check-plane (level)
(case (auv-x-position *phoenix*)
©
(case (auv-y-position *phoenix*)
©
(setf (aref *auv-map* (+ (auv-x-position *phoenix*) 1)
(auv-y-position *phoenix*) level)
(aref *area* (+ (auv-x-position *phoenix*) 1)
(auv-y-position *phoenix*) level))
(setf (aref *auv-map* (+ (auv-x-position *phoenix*) 1)
P p
(+ (auv-y-position *phoenix*) 1) level)
(aref *area* (+ (auv-x-position *phoenix*) 1)
(+ (auv-y-position *phoenix*) 1) level))
(setf (aref *auv-map* (auv-x-position *phoenix*)
(+ (auv-y-position *phoenix*) 1) level)
(aref *area* (auv-x-position *phoenix*)
(+ (auv-y-position *phoenix*) 1) level)))
@
(setf (aref *auv-map* (+ (auv—x-positi(on *phoenix*) 1) )
auv-y-position *phoenix*) level)
(aref *area* (+ (auv-x-position *phoenix*) 1)
(auv-y-position *phoenix*) level))
(setf (aref *auv-map* (+ (auv-x-position *phoenix*) 1)
(- (auv-y-position *phoenix*) 1) level)
(aref *area* (+ (auv-x-position *phoenix*) 1)
(- (auv-y-position *phoenix*) 1) level))
(setf (aref *auv-map* (auv-x-position *phoenix*)
(- (auv-y-position *phoenix*) 1) level)
(aref *area* (auv-x-position *phoenix*)
(- (auv-y-position *phoenix*) 1) level)))
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(otherwise
(setf
(auv- )
(aref *area* v-x-position *phoen
(+( phoenix*
auv-x- . (a‘uv- . X ) 1
(Setf (ar * poSltion % y_posnion * )
of *auv- phoenix* phoenix*
map* (+ (a (auv-y- )1 ) level)
area* (+ (auv ¢+ (t’fluVlon *phOenix*I;hoenix*) level
(Set £ (ar —X-positi()n % -Y'pOSition % 1) ))
ef *au phoenix* phoenix*
v-map* (au + (a3 posi vy ) 1) level
(aref * v-X-position Z‘POSltion *phoen )
area* (auv-x-positi (+ (auv_yphoenix*) oenix*) 1) level)
(setf (aref * sition *phOCnipgSItion *phoenti )
auv-map* (+ (+ (auv- ) enix*) 1) level
(aref *area* (auv-x-position * sition *phoeni )
(+ (auv-x-positi (- (auv- phoenix* enix*) 1)1
( posit V-y-positi )1 evel))
setf (aref * ion *phoeni sition *phoeni
auv-map* (auv (- (auv-l}l]lx*) .1) oenix*) 1) level)
(aref *ar -x-position * position *phoeni
(8 ea* _ ph()e * emX*
(auv-x-positi (- (auv-y-po .r.nx ) ) 1) level))
(case (auv-y-positi - l(zn *ph06nix*s)lt10n *phoenix*
© position *phoeni uv-y-positi ) 1) level)
(Setf p Oemx*) 10n *phOenix*)
1
(aref *auv-map* (- ) level)))))
- (auv-x-positi
(- (auv- . oenix*)
(setf x-position * (auv-y-positi )
(aref *au phoenix * ttion *pho .
v-map* (- (au (auv-y ) 1)_ enix*) level)
(aref *area® v-xX-position ,,P OSItlo'n *phoeni
(setf (aref * oo D) ‘
auv-map* (a  (auv oenix) 1) oenix*) 1) lev
(aref % uv-x'pOSitioI]-Z-posiﬁOn *sh . 61)
area® (au (+ phoenix* phoenix®) 1
V—X_posit. (auv-y_ .. ) ) leVel)
10n *ph _poSltIOn * )
(+ (auoemx*) phoenix*) 1)1
V'Y’Positi(,n %* eVe])
phoenix*)
1) level)))
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(8
(setf (aref *auv-map* (- (
(aref *area* auv-x-position *phoenix*
rea* (- (auv-x-positi (auv-y-positi )b
(S position *pho g 1tion *phOenix*
etf (aref *auv-map* (au enix”) 1) ) level)
p* (- (auv-x-posi .V-y'pOSition *shoeni
(ar £* pOSltlon *ph . p Oemx*) le
ef *area* (- (auv-x (- (auv-y-posi t?enlx*) 1) vel))
-x-position * sition *nhoeni
(setf (aref *auv- o phoenix*) 1) phoenix*) 1) level)
v map* (auV < ( (aUV-y_poSitiOn *oh
-X-position * on “phoe ix*
(aref *area* (auv-x-posi (- (ali)\:iy.pho?r.ux*) nix*) 1) level))
(Oth erwise ~-position * phOem’I;(iSltlon *ph Oenix*) .
( (_ (auv- )- ) leve])
setf (aref *auv- y-position * )
v-map* phoenix*
( (- (auv-x-position *ph ) 1) level)))
aref * phoenix*
area* (- (auV'X-posit' . (auV'y-p:;;i‘) 11
(setf (aref * ion *phoenix* ion *phoenix*
- (auv-x-positi -position *ph .
(aref *area* (- (a (+p( :&t‘l,o; *phOenix*;’IC))emx*) level))
_ (auv-x-position *ph -position *phoeni
(setf (aref *auv- +“ phoenix*) 1) phoenix*) 1) level
v-map* (auv (* (auv-y-positi )
(aref * -X-position *pho I‘On *phoenix*) 1
ef *area* (+ enix*) ) level))
(auv-x-positio *( auv-y-position *
(setf(ar % n PhOenix*) phOCnix*) 1)1
ef auv-map* (- (a + (auv_y_p ositi evel)
(ar f* uV"X-poSitiOn * h lOI{ *phOenix*) 1 1
ef *area™ (- (auv-x ¢ (auV-y-poP;’t(')emx*) 1) ) level)
-x-position * sition *phoeni
(setf (aref *auv- on phoenix*) 1) phoenix*) 1) level
v map* (auv ( (auv‘Y‘pOSitio * )
-X-positi on *phoeni
(aref *area* (auv-x (- (al;)\? ;%hoemx*) enix*) 1) level))
X .. -y- os't’
position *Phoenix*)l ion *PhOCnix*) 01
(- (auv- .. ) level
V-y- )
position * .
phoenix*) 1
) level)))))
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(otherwise
(case (auv-y-position *phoenix*)
©
(setf (aref *auv-map* (- (auv-x-position *phoenix*) 1)
(auv-y-position *phoenix*) level)
(aref *area* (- (auv-x-position *phoenix*) 1)
(auv-y-position *phoenix*) level))
(setf (aref *auv-map* (- (auv-x-position *phoenix*) 1)
(+ (auv-y-position *phoenix*) 1) level)
(aref *area* (- (auv-x-position *phoenix*) 1)
(+ (auv-y-position *phoenix*) 1) level))
(setf (aref *auv-map* (auv-x-position *phoenix*)
(+ (auv-y-position *phoenix*) 1) level)
(aref *area* (auv-x-position *phoenix*)
(+ (auv-y-position *phoenix*) 1) level))
(setf (aref *auv-map* (+ (auv-x-position *phoenix*) 1)
(auv-y-position *phoenix*) level)
(aref *area* (+ (auv-x-position *phoenix*) 1)
(auv-y-position *phoenix*) level))
(setf (aref *auv-map* (+ (auv-x-position *phoenix*) 1)
(+ (auv-y-position *phoenix*) 1) level)
(aref *area* (+ (auv-x-position *phoenix*) 1)
" (+ (auv-y-position *phoenix*) 1) level)))
(setf (aref *auv-map* (- (auv-x-position *phoenix*) 1)
‘ (auv-y-position *phoenix*) level)
(aref *area* (- (auv-x-position *phoenix*) 1)
(auv-y-position *phoenix*) level))
(setf (aref *auv-map* (- (auv-x-position *phoenix*) 1)
(- (auv-y-position *phoenix*) 1) level)
(aref *area* (- (auv-x-position *phoenix*) 1)
(- (auv-y-position *phoenix*) 1) level))
(setf (aref *auv-map* (auv-x-position *phoenix*)
(- (auv-y-position *phoenix*) 1) level)
(aref *area* (auv-x-position *phoenix*)
(- (auv-y-position *phoenix*) 1) level))
(setf (aref *auv-map* (+ (auv-x-position *phoenix*) 1)
(auv-y-position *phoenix*) level)
(aref *area* (+ (auv-x-position *phoenix*) 1)
(auv-y-position *phoenix*) level))
(setf (aref *auv-map* (+ (auv-x-position *phoenix*) 1)
(- (auv-y-position *phoenix*) 1) level)
(aref *area* (+ (auv-x-position *phoenix*) 1)
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(- (auv-y-position *phoenix*) 1) level)))
(otherwise
(setf (aref *auv-map* (- (auv-x-position *phoenix*) 1)
(auv-y-position *phoenix*) level)
(aref *area* (- (auv-x-position *phoenix*) 1)
(auv-y-position *phoenix*) level))
(setf (aref *auv-map* (- (auv-x-position *phoenix*) 1)
(- (auv-y-position *phoenix*) 1) level)
(aref *area* (- (auv-x-position *phoenix*) 1)
(- (auv-y-position *phoenix*) 1) level))
(setf (aref *auv-map* (auv-x-position *phoenix*)
(- (auv-y-position *phoenix*) 1) level)
(aref *area* (auv-x-position *phoenix*)
(- (auv-y-position *phoenix*) 1) level))
(setf (aref *auv-map* (+ (auv-x-position *phoenix*) 1)
(auv-y-position *phoenix*) level)
(aref *area* (+ (auv-x-position *phoenix*) 1)
(auv-y-position *phoenix*) level))
(setf (aref *auv-map* (+ (auv-x-position *phoenix*) 1)
(- (auv-y-position *phoenix*) 1) level)
(aref *area* (+ (auv-x-position *phoenix*) 1)
(- (auv-y-position *phoenix*) 1) level))
(setf (aref *auv-map* (- (auv-x-position *phoenix*) 1)
(+ (auv-y-position *phoenix*) 1) level)
(aref *area* (- (auv-x-position *phoenix*) 1)
(+ (auv-y-position *phoenix*) 1) level))
(setf (aref *auv-map* (auv-x-position *phoenix*)
(+ (auv-y-position *phoenix*) 1) level)
(aref *area* (auv-x-position *phoenix*)
(+ (auv-y-position *phoenix*) 1) level))
(setf (aref *auv-map* (+ (auv-x-position *phoenix*) 1)
(+ (auv-y-position *phoenix*) 1) level)
(aref *area* (+ (auv-x-position *phoenix*) 1)
' (+ (auv-y-position *phoenix*) 1) level)))))))
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Implementation of AUVMINE in Lisp

Author: Jose A. Rodrigues Nt. :

Project: A Mine Searcher for AUV's - Master Thesis NPGS - 1994
Date: September 1994

Version: 0.5

Compiler: Franz Allegro CL/PC version 1.0

Function split-area: Divides the piece of the slice presently being sweept in two
due to the existence of a wall or mountain. Call sweep-area recursivelly to each
half of the chunk and also call the transit function to move the AUV between the
; two sub-areas.

(defun split-area (initial-waypoint final-waypoint)
(let*
((north-limit (max (car initial-waypoint) (car final-waypoint)))
(south-limit (min (car initial-waypoint) (car final-waypoint)))
(up-limit (min (caddr initial-waypoint) (caddr final-waypoint)))
(down-limit (max (caddr initial-waypoint) (caddr final-waypoint)))
(sub-area-one-initial (list (auv-x-position *phoenix*) (auv-y-position *phoenix*)
(auv-z-position *phoenix*)))
(sub-area-two-initial (nth (- (list-length *agenda*) 2) *agenda*))
(sub-area-one-final (list
(if (plusp *x-motion*)
(eval south-limit)
(eval north-limit))
(auv-y-position *phoenix*)
(if (plusp *z-motion*)
(eval down-limit)
(eval up-limit))))
(sub-area-two-final (list
(if (plusp *x-motion*)
(eval north-limit)
(eval south-limit))
(auv-y-position *phoenix*)
(if (plusp *z-motion*)
(eval down-limit)
(eval up-limit)))))
(sweep-area sub-area-one-initial sub-area-one-final)
(transit sub-area-two-initial)
(sweep-area sub-area-two-initial sub-area-two-final)
(setf (auv-status *phoenix*) 'sweeping-level)
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(push (list (auv-x-position *phoenix*) (auv-y-position *phoenix*)
(auv-z-position *phoenix*)) *agenda*)))
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Implementation of AUVMINE in Lisp

Author: Jose A. Rodrigues Nt.

Project: A Mine Searcher for AUV's - Master Thesis NPGS - 1994
Date: September 1994

; Version: 0.5

Compiler: Franz Allegro CL/PC version 1.0

Function transit: moves the auv from the end of one sub-area to the beginning of
another. May also be used later to take the AUV to any position,
e.g., the search initial-position, if the AUV was not launched there.

(defun transit (destination)
(do ((dummy (hill-path (list (auv-x-position *phoenix*) (auv-y-position *phoenix*)
(auv-z-position *phoenix*)) destination)))
;finds shortest path
((equal (list (auv-x-position *phoenix*) (auv-y-position *phoenix*)
(auv-z-position *phoenix*)) destination))
; check if the destination was reached
(cond ; if next waypoint is ok move and update map, else recalculate path
((next-safe)
(move-to-waypoint (pop *sweep-path*))
(look-around))
(t (hill-path destination)))))




Implementation of AUVMINE in Lisp

; Author: Jose A. Rodrigues Nt.

; Project: A Mine Searcher for AUV's - Master Thesis NPGS - 1994
; Date: September 1994

; Version: 0.5

; Compiler: Franz Allegro CL/PC version 1.0

; Function check-wall: check the distance from the present AUV position to the position
; it first encountered the obstacle. Returns true if the distance is

; bigger than 3 levels. Also checks if one of the area limits was

; reached. It is the decision function for split-area.

; Function large-obstacle: If the AUV is back to the search level where the go around

; procedure was initiated, check if the first sub-goal generated
; by the obstacle is in the back. If it is, pops it and all other

; sub-goal above from the agenda.

, Function left-back: Checks if the ongoing sub-goal was left behind.

(defun check-wall ()
(f (> (list-length *agenda*) 1)
(or (> (abs (- (auv-z-position *phoenix*)
(caddr (nth (- (list-length *agenda*) 1) *agenda*)))) 3)

(and (equal (auv-z-position *phoenix*) 1)
(minusp *z-motion*))

(and (equal (auv-z-position *phoenix*) 9)
(plusp *z-motion*)))))

(defun large-obstacle ()
(setq *agenda* (last *agenda*)))

(defun left-back (sub-goal)
(plusp (/ (- (auv-x-position *phoenix*) (car sub-goal)) *x-motion*)))

76



; Implementation of AUVMINE in Lisp

; Author: Jose A. Rodrigues Nt.

Project: A Mine Searcher for AUV's - Master Thesis NPGS - 1994
; Date: September 1994

; Version: 0.5

; Compiler: Franz Allegro CL/PC version 1.0

Function calc-prob: calculates the fraction of area searched after the search,
based on the generated map.

(defvar *undetect-amount*® 0)

(defun count-undetect (node)
(let ((node-counter 0))
(If (equal node ‘'unknown)
(+ node-counter 1)
(+ node-counter 0))))

(defun calc-prob (any-map)
(setf *undetect-amount* 0)

(loop
with x=1
and y=1
and z=1

forx from1to 9
do (loop for yfrom 1 to 9
do (loop forz from 1to 9
do (setf *undetect-amount*
(+ *undetect-amount* (count-undetect (aref any-map x y z)))))))
(- 1 (/ *undetect-amount* 721.0)))




APPENDIX B. THE LISP SOCKETS SOURCE CODE

The following code implements the communications between the
Lisp interpreter and the AUV Execution level. It is also used for
communications between the Lisp interpreter and the Underwater
Virtual World.

The code is based on the Commom Lisp Listener code, used to
create the comnection between Lisp and the EMACS editor. The
program used by the Listener was modified to serve the AUV needs.
Additional functions were created to perform the messaging passing
between Lisp and the Execution Level. Two scripts showing the use

of the functions are included.
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;. Phoenix Lisp/Execution communications implementation

;; Author: Jose A. Rodrigues Nt.

: Project: Lisp sockets - Master Thesis NPGS - 1994
File: 0s9_sock.cl

; Date: July 1994

;. Compiler: Franz Allegro Commom Lisp version 4.0

2
2

- Remarks: This code requires the Lisp-listener code (ipc.cl).

23

(load "mod_ipc.cl")
(use-package :ipc)
(load "init_0s9.cl")
(load "get-0s9.cl")
(load "send-0s9.cl")
(load "end-0s9.c1")
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;; Phoenix Lisp/Execution communications implementation
;; Author: Jose A. Rodrigues Nit.
Project: Lisp sockets - Master Thesis NPGS - 1994
; Date: July 1994
; Compiler: Franz Allegro Commom Lisp version 4.0

;; Modified ipc.cl
;; These are the modifications needed for "ipc.cl" to work with the AUV
;; These definitions must replace the definitons found in "ipc.cl" and the new file must be
;; saved as "mod_ipc.cl".

;; The inet_addr function converts an internet address to an integer internet address.

;; Open-network-stream only accepts strings or integer addresses.

#-(version>= 4 0)
(export '(start-lisp-listener-daemon open-network-stream
*inet-port-min* *inet-port-max* *inet-port-used* inet_addr))

(defparameter *inet-port-max* 3220
"The largest internet service port number on which Lisp listens for
connections.")

(defparameter .needed-funcs.
(mapcar #convert-to-lang
;; this list appears in makefile.cl, too
'("socket" "bind" "listen" "accept” "getsockname"
"gethostbyname" "getservbyname"
"connect” "bcopy" "bemp" "bzero” "inet_addr™)))

80




(eval-when (compile eval load)
:(unless lisp-listener-daemon-ff-loaded.;; modified to allow inet_addr to load
(excl::machine-case :host
((:apollo :tek4300 :1s6000))
(t (unless (dolist (name .needed-funcs. t)
(if (not (entry-point-exists-p name))
(return nil)))
(princ "; Loading TCP routines from C library...")
(force-output)
(unless (load ""
:verbose nil
-unreferenced-lib-names .needed-funcs.
#+(target sgidd) :system-libraries
#+(target sgid4d) '("bsd")
(error "foreign load failed"))
(princ "done")
(terpri)
(force-output))))

(setq lisp-listener-daemon-ff-loaded. t)
(defforeign-list '((getuid :entry-point #,(convert-to-lang "getuid"))

(socket :entry-point #,(convert-to-lang "socket"))

(bind :entry-point #,(convert-to-lang "bind"))

(accept :entry-point #,(convert-to-lang "accept"))

(getsockname :entry-point #,(convert-to-lang
"getsockname"))

(gethostbyname :entry-point #,(convert-to-lang
"gethostbyname"))

(getservbyname :entry-point #,(convert-to-lang
"getservbyname"))

(select :entry-point #,(convert-to-lang "select"))

(connect :entry-point #,(convert-to-lang "connect"))

(bcopy :entry-point #,(convert-to-lang "bcopy"))

(bzero :entry-point #,(convert-to-lang "bzero"))

(bcmp :entry-point #,(convert-to-lang "bcmp"))

(perror :entry-point #,(convert-to-lang "perror"))

(unix-listen :entry-point #,(convert-to-lang "listen"))

(unix-close :entry-point # (convert-to-lang "close"))

(inet_addr :entry-point #,(convert-to-lang "inet_addr")))

print niD);)
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(if* (entry-point-exists-p (convert-to-lang "lisp_htons"))
then ;; Allegro CL 3.1 or later...
(defforeign-list '((lisp_htons :entry-point #,(convert-to-lang
"lisp_htons"))
(lisp_hton! :entry-point #,(convert-to-lang
"lisp_htonl"))
(lisp_ntohs :entry-point #,(convert-to-lang
"lisp_ntohs"))
(lisp_ntohl :entry-point #,(convert-to-lang
"lisp_ntohl")))
:print nil)
else ;; pre-3.1 Allegro CL. Do it the hard way...
#+ittle-endian
(progn
(setf (symbol-function 'lisp_htons) #'(lambda (x)
(logior (ash (logand x #x00ff) 8)
(ash (logand x #xff00) -8))))
(setf (symbol-function 'lisp_ntohs) #(lambda (x) (lisp_htons x)))
(setf (symbol-function 'lisp_htonl) #'(lambda (x)
(logior (ash (logand x #x000000ff) 24)
(ash (logand x #x0000ff00) 8)
(ash (logand x #x00£f0000) -8)
(ash (logand x #xff000000) -24))))
(setf (symbol-function 'lisp_ntohl) #(lambda (x) (lisp_htonl x))))
#+big-endian
(progn
(setf (symbol-function 'lisp_htons) #'(lambda (x) x))
(setf (symbol-function 'lisp_htonl) #(lambda (x) x))
(setf (symbol-function 'lisp_ntohs) #'(lambda (x) x))
(setf (symbol-function 'lisp_ntohl) #(lambda (x) x))))
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;; Phoenix Lisp/Execution communications implementation

;; Author: Jose A. Rodrigues Nt.

; Project: Lisp sockets - Master Thesis NPGS - 1994
File: init_os9.cl

; Date: July 1994

?

; Compiler: Franz Allegro Commom Lisp version 4.0
(defun init_os9 (machine)
(defvar *0s9* (open-network-stream :host machine :port 3210)))

;; get-0s9 returns either the list fo characters in the input buffer

;; of the *0s9* stream or nil if the buffer is empty.

;; pretty-get transforms the list of characters generated by get-0s9
;; into a big string.

;> Note: Everytime we read from the stream we get 81 characters.
If the other side sent less than that, some trash will

appear filling up the stream.

23

kdd

(defun get-0s9 ()
(if (listen *o0s9%)
(let reply (setf reply nil)
(dotimes (index 81 (nreverse reply))
(setf reply (cons (read-char-no-hang *0s9%*) reply))))))

(defun pretty-get () ; returns a string
(coerce (get-0s9) 'string))




:; send-0s9 writes a sequence of 81 characters to the *o0s9* stream.
:; Whatever is the size of your output string send-os9 will make it
;- 81 chars long. It will either fill up with junk or clip it if bigger

;; than 81.

Note IMPORTANT -- The other side has always to read 81 chars or
the communication will get out of synch. If one
time the other side reads, for instance, 20 chars, 61 chars
will be left over in the buffer and will appear on the next

3 read. This will continue forever, unless you clear the buffer.

., To clear the buffer: (clear-output *o0s9*).

2
2

2

(defun send-0s9 (command)
(format *0s9* "~81@<~A~>" command) ;sends command padded w/ blanks
(force-output *0s59*)) ;to complete 81 chars

(defun end-0s9 ()
(close *0s9%))
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Script started on Fri Oct 14 12:59:56 1994
{aquarius}/users/work3/meto/auv/sockets/lisp: cl

Allegro CL 4.1 [SPARC; R1] (2/9/94 14:53)

;; Copyright Franz Inc., Berkeley, CA, USA

:; Unpublished. All rights reserved under the copyright laws
;; of the United States.

;; Restricted Rights Legend

23

. Use, duplication, and disclosure by the Government are subject to

- restrictions of Restricted Rights for Commercial Software developed
- at private expense as specified in DOD FAR 52.227-7013 (c) (1) (ii)-
;; Optimization settings: safety 1, space 1, speed 1, debug 2
:: For a complete description of all compiler switches given the current
;; optimization settings evaluate (explain-compiler-settings).
user(1): (load "os9_sock.cl")
: Loading /work3/meto/auv/sockets/lisp/os9_sock.cl.
; Loading /work3/meto/auv/sockets/lisp/mod_ipc.cl.

Loading /work3/rneto/auv/sockets/lisp/init_os9.cl.

: Loading /work3/meto/auv/sockets/lisp/get-0s9.cl.

Loading /work3/meto/auv/sockets/lisp/send-0s9.cl.

Loading /work3/meto/auv/sockets/lisp/end-0s9.cl.

user(2): (j init_os9 "taurus")

*0s9*

user(3): (pretty-get)

"SUCCESS #1: os9server connected to os9sender!test handshake between hosts:
%s

user(4): (send-0s9 "SUCCESS. Lisp connected to OS( 9) ")

nil

user(5): (pretty-get)

"

user(6): (pretty-get)

user(7): (send-0s9 "WAYPOINT-HOVER 20 45 90 3) ")
nil

user(8): (PRETTY-GET pretty-get)

"mine 203 45__++ TuC "

user(9): (end-0s9)

t

script done




Script started on Fri Oct 14 12:59:50 1994
{taurus }/users/work3/meto/auv/sockets/don: os9server -t
[os9server TRACE on]

os9server socket 'open' successful
os9server socket 'bind' successful
os9server socket 'listen' successful ...
os9server socket waiting to 'accept’ ...

os9server connection is open between networks.

os9server SERVER: socket descriptor = 3,
socket accepted =4,
socket_stream =4

test handshake between hosts:

SUCCESS. Lisp connected to OS9
0ox

mine 203 45
os9server receiver block loop bytes read = 81

WAYPOINT-HOVER 20 45 90 3

[os9server command_sent:mine 203 45]

os9server send_telemetry to_server loop bytes sent = 81
os9server send_telemetry_to_server total bytes sent = 81

os9server receiver block loop bytes read = 0
os9server get PDU_from_other_host read received 0 bytes

(shutdown) shutdown

[os9server command_sent:shutdown])

os9server send_telemetry_to_server loop bytes sent = 81
os9server send_telemetry to_server total bytes sent = 81
os9server shutdown in progress ...

os9server shutdown_os9server () complete

os9server shutdown in progress ...

os9server close (socket stream) failed

os9server shutdown_os9server () complete

os9server exit.

{taurus}/users/work3/meto/auv/sockets/don: exit
script done
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